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CONTINUED FRACTIONS AND LINEAR RECURRENCES 

H. W. LENSTRA, JR. AND J. 0. SHALLIT 

Dedicated to the memory of D. H. Lehmer 

ABSTRACT. We prove that the numerators and denominators of the convergents 
to a real irrational number 0 satisfy a linear recurrence with constant coeffi- 
cients if and only if 0 is a quadratic irrational. The proof uses the Hadamard 
Quotient Theorem of A. van der Poorten. 

Let 0 be an irrational real number with simple continued fraction expansion 
[ao, a1, a2, ... ]. Define the numerators and denominators of the convergents 
to 0 as follows: 

(1) P-2 = O; P-1 = I; Pn = anpn-I +Pn-2 for n > 0; 

(2) q-2 = 1; q-1 = O; qn = anqn-1 + qn-2 for n > O. 

By the classical theory of continued fractions (see, for example, [2, Chapter X]), 
we have 

Pn 
= [ao, al, *0, an]. 

In this note, we consider the question of when the sequences (Pn)n>o and 
(qn)n>o can satisfy a linear recurrence with constant coefficients. If, for exam- 
ple, 0 = v3, then 0 = [1, 1, 2, 1, 2, 1, 2, ... .], and it is easy to verify that 
qn+4 = 4qn+2 - qn for all n > 0. Our main result shows that this exemplifies 
the situation in general. 

Theorem 1. Let 0 be an irrational real number. Let its simple continuedfraction 
expansion be 0 = [ao, al, ...], and let (Pn) and (qn) be the sequence of 

numerators and denominators of the convergents to 0, as defined above. Then 

the following four conditions are equivalent: 
(a) (Pn)n>O satisfies a linear recurrence with constant complex coefficients; 
(b) (qn)n>O satisfies a linear recurrence with constant complex coefficients; 
(c) (an)n>o is an ultimately periodic sequence; 

(d) 0 is a quadratic irrational. 
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Our proof is simple, but uses a deep result of van der Poorten known as the 
Hadamard Quotient Theorem. We do not know how to give a short proof of 
the implication (b) -- (c) from first principles. 

Proof. The equivalence (c) -?= (d) is classical. We will prove the equivalence 
(b) -?? (c); the equivalence (a) .?= (c) will follow in a similar fashion. 

(c) - > (b): It is easy to see (cf. Frame [1]) that 

(3) fPn Pn-I [ao a an 

~3~Now f the 
qn qn- 

I] 
I0 

[i j[a ][ 0]. Now if the sequence (an)n>o is ultimately periodic, then there exists an 
integer r > 0, and r integers bo, b1, ... , br-I, and an integer s > 1 and s 
positive integers co, cl, ... , cs-I such that 

0 = [bo, b1 , ... , br-I, Co, Cl, . . . , Cs- 1co, c, Cl, *-- Cs-I , . . 

Now for each integer i modulo s, define 

Mi= j [c i]j 
0<j<s 

Then for all n > r, we have, by equation (3), 

(4) qns n+s- I [Pn Pn,-I] Mn-r. 
( ) [~~~~qn+s qn+.s- I ] qn qn - l ] 

Since for all pairs (i, j) it is possible to find matrices A, B such that Ml 
AB and Mj = BA, and since Tr(AB) = Tr(BA), it readily follows that t 
Tr(Mi) does not depend on i. Hence the characteristic polynomial of each 
Mi is x2 - tX ? (-1 )S. Since every matrix satisfies its own characteristic 
polynomial, we see that Mn$_r tMn_r + (-1 )SI is the zero matrix. Combining 
this observation with equation (4), we get 

[Pn+2s Pn+2s-1 1 t [Pn+s Pn+s-i1 +( l)s Pn Pn1 = 0. 
[qn+2s qn+2s- I Lqn+s qn+s- I Lqn qn-lj 

Therefore, qn+2s - tqn+s + (-1 )Sqn = 0 for all n > r, and hence the sequence 
(qn)n>o satisfies a linear recurrence with constant integral coefficients. 

(b) = (c): The proof proceeds in two stages. First we show, by means of a 
theorem of van der Poorten, that if (qn)n>o satisfies a linear recurrence, then so 
does (an)n>O. Next we show that the an are bounded because otherwise the qn 
would grow too rapidly. The periodicity of (an)n>o then follows immediately. 

Let us recall a familiar definition: if the sequence of complex numbers 
(un)n>o satisfies a linear recurrence with constant complex coefficients 

Un = E elun-1 
1<i<d 

for all n sufficiently large, and d is chosen to be as small as possible, then 
Xd - Z1<i<d eiXdi is said to be the minimal polynomial for the linear recur- 
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rence. Also recall that a sequence of complex numbers (u,)n>o satisfies a linear 
recurrence with constant coefficients if and only if the formal series Zn>o UfX1 
represents a rational function of X. 

Define the two formal series F = En>0(q,+2- q,)XI and G = Zn>o qn+1 Xn. 
Clearly F and G represent rational functions. We now use the following the- 
orem of van der Poorten [4, 5, 6]: 

Theorem 2 (Hadamard Quotient Theorem). Let F = EZ>o fiXi and G = 

Zi>o g1Xi be formal series representing rational functions in C(X). Suppose 
that the fi and gi are complex numbers such that g, :$ 0 and fi/g, is an 
integer for all i > 0. Then Ej>o(f1/gj)Xi also represents a rationalfunction. 

Since qn+2 = an+2qn+1 + qn for all n > 0 it follows from this theorem that 
Zn>O an+2Xn represents a rational function, and hence the sequence of partial 
quotients (an)n>o also satisfies a linear recurrence with constant coefficients. 

We now require the following lemma: 

Lemma 3. Suppose that (Yn)n>O and (zn)n>o are sequences ofcomplex numbers, 
each satisfying a linear recurrence, with the property that the minimal polynomial 
Of (zn)n>O divides the minimal polynomial of (Yn)n>o. Let d denote the degree 
of the minimal polynomial of (Yn)n>o. Then there exist constants c > 0 and nO 
such that for all n > nO we have 

max(lYn d+l 1 5 lYn-d+21* *5 Yn l) > Clzn1 

Proof. Put Y = En>>0ynXn = f/g with gcd(f, g) = 1 and degg = d, and 
Z = En>O ZnXn = h/g; here f, g, h E C[X]. Since gcd(f, g) = 1, we can 
find a polynomial k = ZOi<dk1Xi of degree < d such that kf _ h (mod 
g). Then Z = kY + m, for a polynomial m, and zn = EO<i<d kiYn-i for 
n > nO = deg m . It follows that 

znl ? (E Ikil) max(lYn-d+l l 5 lYn-d+21 . 5 lYn1) 5 

and the lemma follows, with c = (1 + ZO<i<d kjK)-1 . o 

Since (an)n>o satisfies a linear recurrence, we may express an as a general- 
ized power sum 

an= E Al(n)an 
1<<d 

for all n sufficiently large. Here the ai are distinct nonzero complex numbers 
(the "characteristic roots") and the Al (n) are polynomials in n. 

Now take Yn = an and zn n=an, where a = a1 and I = degAl for some 
i. Then the hypothesis of Lemma 3 holds, and we conclude that at least one 
of an-d+?1 an-d+2, ... , an is greater than cnlalnl , for all n sufficiently large. 
Then, using equation (2), we have 

qdm ? J7J a1 > c' cm * dm * (m!)'. (j(jd)yn(m+l1)/2 
1d dm 
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for some positive constant c' and all m > 1 . But (qn)n>o satisfies a linear 
recurrence, and therefore log qddm = O(dm) . It follows that Ia e 1 for all i, 
and further that degAi = 0 for those i with Iail = 1. Hence the sequence 
(an)n>o is bounded. But a simple argument using the pigeonhole principle 
(see, for example, [3, Part VIII, Problem 158]) shows that any bounded integer 
sequence satisfying a linear recurrence is ultimately periodic. This completes 
the proof. o 
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